CALL FOR PAPERS MicroRNA and Tissue Injury The role of microRNA in modulating myocardial ischemia-reperfusion injury

نویسندگان

  • Yumei Ye
  • Jose R. Perez-Polo
  • Jinqiao Qian
  • Yochai Birnbaum
چکیده

Ye Y, Perez-Polo JR, Qian J, Birnbaum Y. The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 43: 534–542, 2011. First published October 19, 2010; doi:10.1152/physiolgenomics.00130.2010.—MicroRNAs (miRNAs) are small ( 22 nt) noncoding single-stranded RNA molecules that downregulate gene expression. Studies have shown that miRNAs control diverse aspects of heart disease, including hypertrophy, remodeling, heart failure, and arrhythmia. Recently, several studies have suggested that miRNAs contribute to ischemia-reperfusion injury by altering key signaling elements, thus making them potential therapeutic targets. By altering the expression of various key elements in cell survival and apoptosis [such as phosphoinositide 3-kinase (PI3K), phosphatase and tensin homolog deleted on chromosome 10 (PTEN), Bcl-2, Mcl-1, heat shock protein (HSP)60, HSP70, HSP20, programmed cell death 4 (Pdcd4), LRRFIP1, Fas ligand (FasL), Sirt-1, etc.], miRNAs alter the response to ischemia-reperfusion injury. Studies using various in vivo, ex vivo, and in vitro models have suggested the possible involvement of miR-1, miR-21, miR-29, miR-92a, miR-133, miR199a, and miR-320 in ischemia-reperfusion injury and/or remodeling after myocardial infarction. Thus miRNAs could be potential therapeutic targets for the treatment of heart disease. Inhibiting miRNAs by antisense strategies or pharmacological approaches is likely to emerge as an alternative and safe method for conferring shortand intermediate-term protection against ischemia-reperfusion injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370

Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...

متن کامل

Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats

Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...

متن کامل

Pathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?

Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...

متن کامل

Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells

Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011